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SUMMARY

Visual objects contain rich local high-order
patterns such as curvature, corners, and junctions.
In the standard hierarchical model of visual object
recognition, V1 neurons were commonly assumed
to code local orientation components of those
high-order patterns. Here, by using two-photon
imaging in awake macaques and systematically
characterizing V1 neuronal responses to an exten-
sive set of stimuli, we found a large percentage of
neurons in the V1 superficial layer responded
more strongly to complex patterns, such as corners,
junctions, and curvature, than to their oriented line
or edge components. Our results suggest that those
individual V1 neurons could play the role in detect-
ing local high-order visual patterns in the early stage
of object recognition hierarchy.

INTRODUCTION

Neurophysiological studies in the past 60 years have provided a

wealth of understanding of the functions and codes of the

mammalian primary visual cortex. V1 neurons are understood

to exhibit tunings to many basic visual attributes, such as

orientation, color, and motion directions [1–4]. In addition, they

are subject to a variety of contextual modulations [5, 6].

In the domain of contour or form encoding, it is often believed

that V1 neurons primarily serve as simple oriented feature detec-

tors and that subsequent visual areas take conjunctions of these

elements to construct higher-order (HO) feature detectors, grad-

ually building up feature selectivity to more complex and global

patterns along the ventral visual pathway [7–10]. This hierarchi-

cal architecture for object recognition was the inspiration for

deep convolutional neural networks in machine learning [11, 12].

However, evidence from numerous earlier studies suggests

that V1 neuronal codes might be more complex and nuanced.

In fact, Hubel and Wiesel found many hypercomplex cells in

the superficial layer of V1 were difficult to characterize [1, 13],
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and these were later characterized by their end-stopping

property. Some studies suggested that end-stopping could be

used to compute curvature in V1 [14, 15]. Other studies sug-

gested that V1 neurons may also be coding complex features

[16, 17], and their responses were often difficult to model or

interpret particularly when stimulated with more complicated

or natural stimuli [18, 19]. Moreover, possible biases in neuron

sampling, aswell as a limited number of tested stimuli, prevented

us from a full understanding of the V1 neuronal functions [20, 21].

Recent developments in large-scale two-photon calcium-imag-

ing techniques [22, 23] in awake monkeys make it possible to

characterize the V1 neuron tunings more thoroughly, reducing

the sampling bias and cell-sorting errors common in conventional

single- and multi-electrode recording studies [20, 23]. This allows

us to more thoroughly check the selectivity and specificity of the

neurons’ tunings by testing an extensive set of visual shape

features, including orientations, corners, junctions, curvatures,

crosses, concentric gratings, and composite features.

Our results revealed that a large percentage of V1 neurons in

the superficial layer exhibit strong selectivities to specific com-

plex features. While most of these neurons tended to respond

mildly to oriented gratings and bars, and thus exhibited some

degree of orientation tuning, they respondedmuchmore strongly

to their favorite complex patterns. The high degree of specificity

in these neurons’ pattern selectivity suggests that they might

serve as specific pattern detectors for detecting and signaling

the presence of corners, curves, junctions, as well as other

ecologically meaningful patterns, which could have profound

implications for the construction of visual object recognition

hierarchy.

RESULTS

Two-Photon Calcium Imaging of V1 Superficial Layer
Neurons in Awake Monkeys
We performed large-scale, two-photon imaging of neuronal

populations in the V1 superficial layer of awake monkeys

(Macaca mulatta) with calcium indicator GCaMP5 [23, 24]

derived by adeno-associated virus (AAV) (Figures 1A and 1B).

The V1 neurons’ calcium signals in response to visual stimuli

were imaged with a two-photon microscopic technique while
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Figure 1. Large-Scale Two-Photon Calcium Imaging and Visual Pattern Scanning in Awake Monkeys

(A and B) Two-photon images from the macaque primary visual cortex infected by AAV1-GCaMP5G, zoomed 13 (A) and 23 (B).

(C) An example of differential images from monkey B showing the neuronal population response to a drifting grating.

(D) The basic prototype patterns used for the generation of the 9,500 stimulus set. The standard orientation (OT) stimuli included edges, long and short bars

(0.4�, 0.6�, and 1� in length and 0.1� and 0.2� in width), and gratings. The HO stimuli included corners, curvatures, crosses, and composition patterns such as

plaids, rings rays, and whiskers, which were the combinations or variations of the simpler stimuli.

(E) The stimulus sets were generated by rotating the basic patterns in 22.5� steps and are presented at five position placements. Each rotation was tested in one

single session.

(F) Each stimulus was presented at the cluster center of all the neurons’ receptive field, as well as four positions with 0.2� displacements from the center in the four

cardinal directions. The red dashed circles indicate the 0.8� diameter of aggregated RFs of the neuronal population. The white crosses indicate the averaged

center of RFs for all imaged neurons.

(G) Raw calcium signal traces of the ten example cells marked in color code in (B) in response to the visual stimuli.

See also Figures S1 and S2 and Movie S1.
themonkeys performed a fixation task. In each trial, themonkeys

maintained fixation for at least 2 s to get a juice reward. During

each fixation, a blank screen was presented for 1 s, followed

by a visual stimulus for another second. To quantify the neural

responses, a differential image of the calcium signals between

the stimulus period and the blank period was computed for

each trial (Figure 1C). The regions of interest (ROIs) of activated

cells were identified from the differential images. The response of

a cell was computed as the standard DF/F0, based on the

averaged activity within an ROI during stimulus presentation in

each trial (see STAR Methods).

An 8503 850 mm imaging field was located at a retinal eccen-

tricity of 3� to 4� (in visual angles) for each monkey. The cortical

depth being imaged was from 160 to 180 mm, which was within

the superficial layers of V1. The imaged area typically spans one

to two hypercolumns, with recognizable pinwheel orientation

maps [23]. The receptive fields of the neurons were first localized

with small oriented gratings (Figure 1C). They were then mapped

precisely with short black/white bars of six orientations and small

black/white squares. The sizes of the neurons’ receptive fields
(RFs) that can be mapped out by the short bars varied from

0.5� to 0.8� in diameter. The receptive fields of the neurons

form a relatively tight cluster with aggregated spatial coverage

spanning about 1.0� because they were mostly from one or

two hypercolumns.

Experimental and Stimulus Designs
We tested the neurons’ responses to a diverse set of simple and

complex stimuli, generated from 138 basic prototypes

(Figure 1D). These prototypes were grouped into five major

categories (color marked in Figure 1D): orientation (OT) stimuli

(edges, bars, and gratings), corner (CN) stimuli, curvature (CV)

stimuli, cross (CX) stimuli, and composition (CO) stimuli (compo-

sition patterns created by combining multiple elements drawn

from the first four categories). The CO stimuli were found to be

effective in driving the neurons in our pilot experiments. Each

of the stimuli was shown in a 3� 3 3� aperture. Notably, some

patterns had relatively small sizes (comparable to the size of

receptive fields of the imaged neurons), including short-oriented

bars (0.4�, 0.6� and 1�in length) and smallest CV stimuli in
Current Biology 28, 38–48, January 8, 2018 39



column 12 (see Figure 1D). A comprehensive presentation of the

CV and CN stimuli tested is presented in Figure S1.

The stimulus set was designed to test the hypothesis that

neurons in V1 are not only orientation tuned but also selective

to specific HO features. As a HO feature could contain

multiple lower-order features (e.g., locally oriented bars) as its

components, testing this hypothesis involves testing a neuron’s

selective responses to a HO pattern as well as its oriented

component parts.

In the full set of stimuli, each of these 138 prototypes was

rotated in increments of 22.5�, resulting in eight rotations for sym-

metric and 16 rotations for asymmetric patterns (see Figure 1E).

Each stimulus was presented in five spatial positions—one at the

center of the receptive field clusters and four at a 0.2� shift in each
of the cardinal directions (see Figure 1F). Since the aggregated

receptive field of the imaged neurons at 3� eccentricity covered

about 0.8� in diameter, testing stimuli at those five spatial

positions over the aggregated receptive field maximized the

probability of presenting stimuli at the center of the receptive

fields of the individual imaged neurons.

The entire stimulus set consisted of 1,600 standard orientation

patterns, including edges, short and long bars, and gratings, and

7,900 more complex HO patterns (curvatures, corners, crosses,

and composition patterns). The stimulus set was similar to that in

earlier studies for characterizing complex pattern selectivity of

V2 and V4 neurons with single-unit recording [16], except that

our stimulus set covered the feature space more extensively

and containedmore control stimuli for assessing local and global

orientation tuning and end-stopping tuning properties.

The stimulus set was divided into eight subsets. Each was

associated with one of the eight major rotations of the 138 pro-

totypes in 22.5� increments and was tested in a single, one-

day session in about 6,000 trials (Figures 1E and 1F). Stimulus

presentations were randomly interleaved. Each stimulus was

repeated five to six times. The responses of each individual

neuron indicated by the calcium signal during stimulus presenta-

tion were extracted and analyzed (Figure 1G).

To reduce the bias in cell sampling, we identified all activated

cells automatically based on their visual responses (ROIs with

activities above 3 SD of the differential images) to all visual

stimuli tested. We identified 1,142 activated cells in monkey A

and 979 cells in monkey B. Weakly responding cells with peak

DF/F0 < 0.5 were excluded from further analysis because of

the relatively large noises and uncertainty concerning their actual

stimulus preference. The responses of the remaining 767 and

816 cells from monkeys A and B were analyzed, respectively.

Our previous study showed that, with high-quality image regis-

tration, single cells could be tracked reliably (>90% cells across

days to weeks) and their neuronal responses were stable across

days [23] (see also Figure S2 andMovie S1). To confirm the qual-

ity of image registration and the stability of neuronal responses in

this study, we repeated a set of stimuli in every recording ses-

sion. We found that the neuron responses were stable across

days (Figure S2). These results confirm both the high quality of

image registration and the stability in recordings across days.

Signals extracted from all image series were combined into an

integrated neuronal responsematrix to all the 9,500 tested visual

stimuli for further analysis. We were able to test the complete set

in monkey A. However, we were only able to test a coarser set
40 Current Biology 28, 38–48, January 8, 2018
(four major orientations at 45� rotation increments, totaling

4,605 stimuli) in monkey B across 4 days before we lost precise

image registration of some of the tracked neurons. Even so, the

dense-oriented bars (7.5� or 48 orientations) were tested in both

monkeys. The results from monkey B did not differ significantly

from our key results from monkey A on pattern selectivity.

Neuronal Selectivity to Specific Complex Patterns
We observed that a large percentage of imaged V1 neurons

responded significantly stronger to high-order, complex patterns

(HO stimuli) than to standard oriented bars and gratings

(OT stimuli). In one example from monkey A, distinct neuronal

populations were activated by a particular curvature as well as

by bars of two different orientations (Figures 2A–2C; see also

Movie S2). Among these, cell 554 responded strongly to the CV

stimuli (Figure 2D) but only weakly to any of the oriented bars.

Furthermore, among the 9,500 stimuli tested, all of the preferred

stimuli of this cell (with DF/F0 above half of the maximum

response observed for this neuron) belonged to the curvature

category (Figure 2D). This neuron did not respond well to bars

of different orientations in different lengths (Figure 2E).

To confirm that the high degree of selectivity to specific curva-

ture patterns was not due to spurious activities of neurons or

unknown sources of variability in the system, we performed

receiver operating characteristic (ROC) analysis [25] across trials

for each neuron (Figure 2F) and compared with that from trials

obtained by shuffling stimulus labels in each trial. The much

higher area under the ROC curve (AUC) from observed data

(close to 1.0) than that from shuffled data (around 0.67) indicated

that this neuron’s responses to its preferred stimuli were highly

reliable across trials and could not have arisen from chance

(p < 0.001; see STAR Methods and Figure S3).

As in the case of cell 554, when a cell’s preferred stimuli

(i.e., with responses above half of its maximum) all belonged to

the curvature category or composition patterns that contained

curvatures, it was classified as a curvature-selective cell. In total,

we found 57 curvature-selective cells in monkey A and 53 in

monkey B. All but four cells passed the ROC significance

test (p < 0.001), while those four cells passed the test with

p < 0.05, indicating a high degree of reliability in their selective

responses to CV stimuli across trails.

Note that these curvature-selective cells are qualitatively

different from the cells with curvature tunings reported in previous

studies [14, 15]. Cells with curvature tuning, reported earlier, could

respond equally well to both short-oriented bars and preferred

curvatures. The curvature-selective neurons we report here, how-

ever, exhibited at least 2-fold stronger responses to specific

CV stimuli than to any other stimulus, including oriented bars or

other distinct complex patterns such as corners and crosses.

Thus, these curvature-selective neurons can be considered as

‘‘curvature detectors’’ that can detect and signal the presence

of a particular CV stimulus. This feature selectivity is akin to that

of the ‘‘face cells’’ in the inferotemporal cortex that responded

strongly to faces but only weakly to non-face objects [26].

To compare a curvature-selective neuron’s preference to

curvatures over its preference to OT stimuli, we calculated a

curvature preference index (PICV) = (max(RCV) / max(ROT) for

each curvature-selective neuron (Figures 2H and 2J). Here

the max(RCV) was the maximum response to any CV stimuli,



Figure 2. A V1 Superficial Layer Neuron that Is Highly Selective to Curvature

(A–C) Calcium activities, at single-cell resolution, of the imaged V1 superficial layer in responding to a short arc (A, stimulus 8,267) and two short-oriented bars

(B and C, stimuli 397 and 363), respectively, from monkey A. The arc strongly activated a few neurons including cell 554.

(D) Responses of cell 554 to the 9,500 artificial stimulus set. The background color of each stimulus indicates the response to the stimulus, proportional to the

white DF/F0 number labeled in the upper left corner of each stimulus. All the preferred stimuli of cell 554 (with responses >50% max) are CV stimuli.

(E) The curvature and orientation tunings of cell 554.

(F) ROC analysis confirmed that the selective responses of cell 554 were reliable and repeatable.

(G) Orientation tuning to the optimal CV stimuli of cell 554 as compared to the orientation tuning to the optimal bar stimuli showed that responses to CV stimuli

were much stronger than the responses to the optimally oriented bar stimuli for this neuron. Error bars, mean ± SEM.

(H) The distribution of curvature preference indices of the curvature-selective cells from monkey A.

(I) The distribution of the sharpness indices of the curvature-selective cells of monkey A. The sharpness index is equivalent to the half-height tuning bandwidth or

the percentage of CV stimuli evoking responses above half of the maximum response.

(J and K) The distribution of curvature preference indices (J) and the sharpness index (K) of the curvature-selective cells of monkey B.

See also Figure S3 and Movie S2.
and the max(ROT) was the maximum response to any of the

OT stimuli. We found that the curvature-selective neurons

responded on average 4.3 and 4.7 times better to the optimal

CV stimulus than the optimal OT stimulus, including bars with

different lengths. Thus, this observed curvature-selective

response could not be simply explained by their end-stopping

property or orientation tunings.
We also defined a sharpness index to quantify the neurons’

sharpness of tuning to CV stimuli (Figure 2D) as the percentage

of CV stimuli evoking responses above half of the maximum

response of the 33 16 curvature parameter table (see Figure S1)

that contained the CV stimulus that evoked the maximum

response. The sharpness indices, or the half-height tuning

bandwidth of the curvature-selective neurons, had similar
Current Biology 28, 38–48, January 8, 2018 41



Figure 3. A V1 Superficial Layer Neuron Highly Selective to CN Stimuli

(A) Selective responses of cell 597 from monkey B to the 4,605 stimulus set. The background color of each stimulus indicates the response to the stimulus,

proportional to the whiteDF/F0 number labeled in the upper left corner of each stimulus. All the preferred stimuli (with responses >50%max) of cell 597 belong to

the corner category.

(B) The neuron is selective and tuned to a particular region of the corner parametric space. The response to each preferred whole corner is greater than the sum of

the responses to its parts (shown on the left and bottom margins).

(C) Responses to the different orientation of the optimal CN stimuli versus that of the optimal bar stimulus indicates the cell respondedmore strongly to CN stimuli.

Error bars, mean ± SEM.

(D) ROC analysis confirming the reliability of the selective responses of the cell across trials.

(E and F) The distribution of corner preference indices of corner-selective cells of monkey A (E) and monkey B (F).

(G and H) The distribution of the selectivity sharpness indices of corner-selective cells of monkey A (G) and monkey B (H).
distributions with means of 7% and 12% for monkeys A and B,

respectively (Figures 2I and 2K). That is, of the 48 CV stimuli in

the curvature parameter table of a particular cue that contained

the maximum responding stimulus, approximately three to five

stimuli responded above half of the peak response.

Another example neuron (cell 597) from monkey B responded

selectively toCN stimuli (Figure 3). This neuron preferredCN stim-

uli or stimuli containing corners (e.g., the cross stimulus 3,015

shown in Figure 3A). We defined such cells as ‘‘corner-selective

cells.’’ This neuron exhibited systematic tuning to corner

parameters (Figure 3B), and its responses were significantly

greater to corners than to the component bars alone (Figure 3C).

Note that the strict criterion of requiring a corner-selective neuron

to respond twice stronger to a preferred CN stimulus than

OT stimuli implies that the response of a corner-selective cell to

its preferred corner is always greater than the sum responses

to the orientation components, which were included in the

tested OT set.

In total, we found 77 and 93 such corner-selective cells in

monkeys A and B, respectively. More than 94% cells passed
42 Current Biology 28, 38–48, January 8, 2018
the ROC significance check (p < 0.001; Figure 3D). The distribu-

tions of the corner preference index PICN = (max(RCN) / max(ROT)

for the corner-selective neurons in the twomonkeys are shown in

Figures 3E and 3F, where max(RCN) was the maximum response

to any CN stimuli and max(ROT) was the neuron’s maximum

response to any of the OT stimuli. The corner-selective neurons’

responses to the optimal CN stimulus were on average 3.2

(monkey A) and 3.5 (monkey B) times more than their responses

to the optimal OT stimuli. We calculated the selectivity

sharpness index, or the half-height corner-tuning bandwidth, in

corner parameter space. Two monkeys had close sharpness

distributions (Figures 3G and 3H).

Validation of HO Stimulus Selectivity with Feature
Reduction and Perturbation Experiments
We performed detailed feature reduction and perturbation

experiments to identify the critical features of four typical

complex pattern-selective neurons in monkey A. We tested a

large number of variations of patterns possible in the HO feature

space for each tested neuron. For example, in feature reduction,



(legend on next page)

Current Biology 28, 38–48, January 8, 2018 43



a curvature feature would be simplified to oriented edges or

corners. In perturbation, the orientation of each side of a corner

could be changed independently. Those experiments could take

multi-sessions (days) for each neuron. During these experi-

ments, we verified the stability of targeted neurons by their stable

responses to the optimal patterns across sessions.

One example, cell 1,075 from monkey A, was selective to a

sharp corner with specific angle and orientation (stimuli 4

and 11, Figures 4A–4C). Perturbing the orientation of either

side of the corner reduced the magnitude of the cell’s responses

(stimuli 1–15), which indicated that the selectivity of this neuron

did not arise from simple orientation tuning to the individual

side edges but from the conjunction of both edges. While this

neuron did exhibit orientation tuning, its optimal responses to

orientation edge or bar stimuli were much weaker compared to

those of the optimal corner (Figure 4C, stimuli 15 and 24–28).

We also found that deleting part of the CN stimuli, such as the

base (stimuli 16–18), the tip (stimuli 19 and 20), or the shoulder

(stimuli 22 and 23), all reduced the responses of the neuron

significantly. These observations together confirmed that the

neuron’s selectivity was toward the CN stimulus as a whole,

rather than the lower-order features or fragments.

In another example, we identified the critical feature of a

curvature-selective cell (926) in monkey A using feature reduc-

tion. We found that simplifying the preferred curvature edges

to oriented edges (Figure 4F, stimuli 2–4 and 16–25) significantly

reduced the neuron’s response. HO stimuli like corners or triple-

orientation edges restored the responses somewhat (Figure 4F,

stimuli 2–4 and 5–13). In addition, replacing the straight edge

inside the receptive field with a smooth convex edge almost fully

restored the neuronal responses (Figure 4F, stimulus 14). Cutting

off the flank of the optimal curved edge stimulus to 0.8� in width

resulted in a reduction of the neuron’s response by half (Fig-

ure 4F, stimulus 15), and additional removal of the flank caused

further response decrease (stimuli 16–18). All narrow-oriented

edges (0.2�–0.8� in width, and presented at three positions)

could not elicit strong responses (stimuli 19–25), indicating that

strong curvature-selective responses might not simply be due

to the end-stopping in orientation tunings. Finally, filling two

flanks of the narrow-oriented edge with curvature edges largely

restored the response (stimulus 26), underscoring the impor-

tance of the entire pattern of the stimuli in shaping the pattern
Figure 4. Feature Reduction and Perturbation Experiments

(A) A 23 zoom of baseline F0 image of a local area (top).

(B) The differential image F � F0 of the same area in response to visual stimulatio

this image.

(C) Cell 1,075 was sensitive to the orientations of the two edges of the optimal CN

which was significantly attenuated by removing the sharp tips (stimuli 19 and 20),

other parts of the pattern.

(D and E) A 23 zoom of F0 (D) and F � F0 (E) images in response to the edge of

neuron in response to the black disk’s curved edge.

(F) Cell 926 did not respond well to straight edges that are local approximations

19–25). Bending the straight line into an angle (stimuli 5, 8, 10–14) to success

Cutting off fragments from the global curvature pattern reduced the responses

critical part of the circular edge eliminated its response (stimuli 27 and 28). This f

feature for driving this cell. Error bars, mean ± SEM.

(G–J) The spatial receptive fields of the two neurons mapped by their respective

preferred features but also highly sensitive to their precise spatial locations. The re

the pattern indicates the strength of the response for visualization purpose.
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selectivity of the neuron. This was true even in cases where the

pattern was larger than the classical receptive field of the neuron.

Interestingly, a tiny bump or indent at the critical local position

inside the receptive field almost completely annihilated the

responses of the neuron (Figure 4F, stimuli 27 and 28), probably

due to a break in the smoothness of the curvature. These results

confirmed the selectivity of this neuron to a smooth, curved edge

with a certain spatial extent.

In the perturbation experiment, we additionally presented the

preferred stimuli in a 5 3 5 grid with 0.2� displacement to map

the receptive fields of the cells with their preferred stimuli

(Figures 4G–4J). We found that while the optimal pattern was

relatively large (>0.8� in size), the cell was nevertheless sensitive

to a 0.2� positional shift of the optimal stimulus.

The Diversity and Complexity of Neuronal Selectivity
We also found cells that were selective to other categories of

complex patterns. Cell 1,032 in monkey A responded selectively

to the CX stimuli (Figure 5A). It respondedwell to crosses defined

by two or three intersecting lines, but not to corners (L junctions)

or any individually oriented components. More example cells

with HO shape selectivity are shown in Figure S4.

We also found many neurons responding well to oriented bars

labeled as orientation-tuned neurons in this study. However,

many of these neurons also exhibited tunings to complex fea-

tures. Nevertheless, to be conservative in our estimate, our strict

classification criterion was biased in favor of the lower-order

category. Neurons with responses to any OT stimulus over

50% of their individual peak responses would be classified as

an OT neuron even though they might also respond strongly to

curvature. A case in point, cell 139 in monkey B responded

strongly to curvature (Figure 5B, stimuli 3,932, 3,937, and

3,938) and exhibited significant curvature tunings (Figure 5B,

stimuli 3,932 versus 3,917 and 3,937 versus 3,957; ANOVA,

p < 0.001). However, we classified it as an orientation neuron

because it responded sufficiently well to short-oriented bars

(stimuli 163 and 443). Overall, we found about 80% of the end-

stopping orientation-tuned cells had significant curvature tunings

(ANOVA, p < 0.05). This subgroup of cells could be end-stopping

cells with curvature tunings studied in previous studies [14, 15].

However, we found that about 80% of the orientation-tuned

cells without end-stopping would also exhibit significant
n of a sharp corner. Cell 1,075 was the most rigorously responding neuron in

stimulus (perturbations 1–14). Optimal response was elicited by stimulus 15,

removing the body part of the pattern (stimuli 16–18, 22, and 23), or modifying

a black circular disk in another imaged region. Cell 926 was the most excited

of the circular edge of the black disk inside the receptive field (stimuli 2–4 and

ively better approximate the circular edge increased the neuron’s response.

significantly (stimuli 15–18 and 26). Introducing a small bump or dent at the

eature reduction experiment suggested a smooth global curvature is a critical

optimal stimuli, showing that the neurons were not only highly selective in their

sponses were normalized to between 0 and 1 in (G) and (H), and the contrast of
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curvature tunings (ANOVA, p < 0.05). As an example, cell 451 in

monkey A (Figure 5C) responded well to the long-oriented line

(stimulus 107), hence it was not end-stopping. Nevertheless, it

preferred one curvature (stimulus 8,537) over the opposite cur-

vature containing the same local orientation fragment (stimulus

8,577; ANOVA, p < 0.01). Therefore, V1 neurons that were clas-

sified as orientation-tuned cells with or without end-stopping

could also be tuned to more complex features.

We grouped all the analyzed cells (765 cells from monkey A

and 816 cells from monkey B) into two classical orientation-

tuned classes (with and without end-stopping) and five HO clas-

ses (i.e., curvatures, corners, crosses, compositions, and

mixed), using the same criteria that were used in classifying

the curvature- or corner-selective cells (Figures 5D and 5E).

The mixed class consisted of neurons that responded equally

well to stimuli in at least two HO classes, such as both curvature

and corner.

Overall, nearly half of the analyzed cells exhibited selectivity to

complex patterns over simple oriented features (44% in monkey

A and 51% in monkey B). We used an HO-selective index,

SI = (max(HO) � max(OT)) / (max(HO)) + max(OT)), to charac-

terize the preference to HO patterns against OT stimuli, where

max(OT) is the optimal response to any oriented bar or grating

stimuli in the set and max(HO) is the optimal response to the

HO stimuli. Nearly half of the cells showed strong preferences

(SI > 0.33) for HO stimuli.

In this study, because of the larger number of stimuli we were

scanning every day, the number of repeats per stimulus was

typically limited to five. The long duration of stimulus of 1 s

allowed a long integration window for the CGaMP5 signals.

The signal reliability could be comparable to those from 10 to

20 repeats in electrode recording studies.

DISCUSSION

We performed large-scale two-photon imaging of the responses

of V1 neurons to an extensive set of stimuli in awake macaques.

The results provided a more comprehensive view of the popula-

tion activities of neurons and a more detailed assessment of the

neurons’ tuning properties compared to that of single-unit or

multi-unit array recordings. In particular, the results revealed

that a large portion of neurons in the superficial layer of V1

exhibited strong selectivity to a diverse set of complex patterns.

We suggest that these neurons may serve as ‘‘local detectors’’
Figure 5. Diversity of Feature Selectivity of Neurons in V1 Superficial L

(A) Cell 1,032 frommonkey A was highly selective to cross patterns. The response

all other categories, including orientation and corners.

(B) Cell 139 from monkey B responded strongly to a short bar and hence was c

sponded strongly to CV stimuli (stimuli 3,932, 3,937, and 3,938), which contained

and 443), but it was also sensitive to the direction and the degree of the CV stim

selective neurons could encode curvature, as suggested by earlier studies.

(C) An orientation-tuned cell (451) from monkey A that responded to many differen

not end-stopping. Yet it was tuned to curvature, showing a robust response to CV

0.01), even though both stimuli shared the optimal locally oriented element prefe

(D and E) Pie charts of the proportion of each class of feature-selective neurons

crimson; curvature, red; crosses, yellow; composition, green; mixture, light blue;

stopping, dark blue.

(F and G) Distributions of the HO feature selectivity of the neuronal population in

See also Figure S4.
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for curvatures, corners, junctions, and other HO patterns in the

visual object recognition hierarchy.

Previous Studies on V1 Neuronal Coding
V1 neurons are traditionally assumed to primarily encode ori-

ented edges and bars [1], and HO visual features are thought

to be represented by neurons in the downstream extra-striate

cortical areas, such as V2, V4, and beyond [7–10], building on

the elementary-oriented feature detectors in V1.

However, a number of earlier studies suggested that V1

neurons might be more complex than simple linear or nonlinear

filters (e.g., linear-nonlinear-poisson [LNP] models) [14–19]. But

those works did not provide direct evidence demonstrating V1

neurons’ high degrees of selectivity to complex patterns, nor

did they necessarily lead to the conclusion that V1 neurons could

potentially function as specific pattern detectors. In fact, Hubel

and Wiesel found many V1 neurons hard to characterize and

called them hypercomplex cells in their pioneer work [13]. End-

stopping later became a key attribute of these hypercomplex

cells and has been proposed to be used for curvature computa-

tion [14, 15]. An early study suggested that V1 cells could detect

local orientation discontinuity [16]. Another study suggested V1

neurons may be selective to complex patterns [17], but insuffi-

cient stimuli were tested as controls to rule out definitively simple

orientation component and end-stopping as potential causes.

Only when we tested so many neurons with such a large array

of stimuli were we able to discover the complex pattern selec-

tivity of V1 neurons.

Investigation of V1 Neuronal Selectivity
Indeed, our current understanding on V1 neurons’ tunings could

be biased and limited by both the neurons that could be sampled

and the stimuli that could be tested [20, 21]. As shown in this

study, the neurons in the superficial layer of V1 were densely

packed. It may be very hard to isolate these neurons from extra-

cellular microelectrode recordings.

Meanwhile, the tuning and selectivity of V1 neurons that can

be observed also depend on the stimuli tested. For instance,

cell 926 from monkey A responded weakly or moderately to

oriented edges, exhibiting statistically significant orientation

tuning (Figure 4F, stimuli 2–4) and end-stopping (Figure 4F,

stimulus 3 versus stimulus 24). We found that even though

HO neurons exhibited significantly weaker responses to oriented

stimuli than to the optimal HO patterns, most of them did show
ayer

of the cell to the optimal CX stimulus was at least twice stronger than stimuli in

lassified as an end-stopping orientation-tuned cell. Nevertheless, this cell re-

locally oriented features that matched the optimally oriented bars (stimuli 163

uli. This example demonstrated that some standard end-stopping orientation-

t types of stimuli that contain the appropriate orientation element. The cell was

stimulus 8,537 but a weak response to a flipped curvature (stimulus 8,577, p <

rred by the cell.

for monkey A (D) and monkey B (E). Color scheme is as follows: angle/corner,

orientation tuned with end-stopping, blue; and orientation tuned without end-

monkey A (F) and monkey B (G).



significant orientation tuning (>70%; ANOVA, p < 0.05). When

tested with simple OT stimuli, the HO cells and OT cells had

similar distributions of orientation tunings and end-stopping

properties. Their orientation tuning and end-stopping properties

were also consistent with those from early extracellular

recording studies [27]. For cell 926, when tested with multiple

orientation segments, it would show contextual modulation

effects (Figure 4F, stimulus 6, 10, or 12) or ‘‘supra-optimal’’

responses to orientation discontinuity [16]. Only when we tested

richer stimuli containing the appropriate CV stimulus could we

discover the cell’s true preference and recognize its high degree

of selectivity. Additionally, in some extreme cases, highly selec-

tive neurons (such as cell 554 from monkey A, Figure 2D) might

be quite silent to non-optimal stimuli, thus easy to miss in previ-

ous studies [20, 21]. Given the diversity and the specificity in

V1 neuronal selectivity as observed in our study, a rich set of

stimuli may always be necessary to efficiently activate individual

V1 neurons and find out their true selectivity.

Underlying Mechanisms of V1 Neuronal Selectivity
There is evidence that recurrent interactions might play a role in

shaping the stimulus selectivity of V1 neurons [28, 29]. Neurons’

responses become sparser when natural images or movies are

shown in full view than through an aperture, suggesting that

image context may enhance the ‘‘selectivity’’ of the neurons

[18]. Our feature perturbation experiments showed that an

extended part of the optimal patternmight be critical in activating

V1 neurons (Figure 4). Thus, the influence of the surrounding

context might be more feature specific, as also suggested by a

previous study [18], than the conventional iso-orientation

surrounding modulation, suggested by other earlier studies

[5, 30]. It is known that top-down feedback could also shape

neuronal selectivity [31], making neuronal tunings more flexible

and dynamic depending on the behavioral tasks. But those

effects tend to be subtle (around the 5%–10% level), which could

not provide amajor contribution in the high selectivity (more than

100%) of V1 neurons. Additional experiments are required

to elucidate the underlying mechanisms that give rise to the

selectivity to complex features we observed.

Functional Implications
When neural signals flow from V1 to V2, the receptive fields

expand and becomemore invariant, resulting in the feature detec-

tors losing spatial and feature precision due to spatial pooling.Our

result indicates that theremay be a stage of local complex pattern

detection in V1 superficial layer in the visual object recognition hi-

erarchy. Having complex feature detectors before spatial pooling

has been shown to be beneficial for object recognition (e.g., a ‘‘^’’

detector for the letter ‘‘A’’) in neural networks [12, 32], which could

happen in the early cortical stage of the visual system.

We should emphasize that while a neuron can be selective to a

particular feature with strong response, serving as a specific

feature detector, it can still be tuned to many other stimulus

features and attributes with moderate and weak responses to

encode information in a distributed population code.

Conclusions
With large-scale two-photon calcium imaging of V1 neurons, we

can observe a large population of neurons in action, ameliorating
potential sampling biases that have plagued single-unit studies

in the past. Our study reveals that many individual V1 neurons

exhibit strong selectivity to specific complex patterns and might

serve as specific feature detectors. This new finding suggests a

stage of local complex feature detection in V1 superficial layer for

constructing the visual object recognition hierarchy.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Macaque monkey
The rhesus monkeys were purchased from Beijing Prima Biotech Inc and housed at Peking University Laboratory Animal Center. The

study used two health adult male monkeys, 4 – 5 years of age andweighing 5 – 7 kg. All experimental protocols were approved by the

Peking University Animal Care and Use Committee.

METHOD DETAILS

Monkey preparation
Two sequential surgeries were performed on each animal under general anesthesia and strictly sterile conditions. In the first surgery,

a 16-mm hole was drilled in the skull over V1. The dura was opened, and 50 to 100 nL of AAV1.hSynap.GCaMP5G.WPRE.SV40

(AV-1-PV2478, titer 2.37e13 (GC/mL), Penn Vector Core) were pressure-injected at a depth of �500 mm. After AAV injection, the

dura was sutured. The removed skull bone was placed back and the scalp was sutured. The animal was then returned to its cage

for recovery and was administered an antibiotic (Ceftriaxone sodium, Youcare Pharmaceutical Group, China) for one week.

After 45 days, a second surgery was performed, in which three head-posts were implanted on the animal’s skull, two on the forehead

and one on the back of the head. A T-shaped steel frame was connected to these head posts for head stabilization during imaging.

The skull and durawere opened again. A glass coverslip (diameter 8mmand thickness 0.17mm)was glued to a titanium ring and then

gently pushed down onto the cortical surface. A ring-shaped GORE membrane (20 mm in outer diameter) was inserted under the

dura. The titanium ring was glued to the dura and skull with dental acrylic to form an imaging chamber. The whole chamber, formed

by the thick dental acrylic, was then covered by a steel shell to prevent breakage of the coverslip when the animal was returned to the

home cage [23].

Behavioral task
During imaging, each monkey was seated in a primate chair with a head restraint and performed a fixation task, which involved

fixating on a small white spot (0.1�) within a window of 1� for over 2 s to obtain a juice reward. Eye position was monitored with

an infrared eye-tracking system (ISCAN) at 120 Hz.

Eye movement control
We analyzed the distribution of eye-positions during stimulus ON periods. While a 1� fixation window was used, the monkeys’

fixations during stimulus presentation (from 1 to 2 s in the graph) were quite stable and precise, with 98%of the eyemovement traces

within a 0.4� diameter window and 95% of the eye movement traces within a 0.2� window. The standard deviation of the distribution

of eye positions during stimulus presentation was less than 0.05�, which was significantly smaller than the typical receptive field sizes

of neurons at 3-5� degree eccentricities (ranging from0.3� to 0.8�). To examinewhether the eyemovement contributed significantly to

the distribution of neuronal population responses, we compared the standard deviations (SDs) of eye positions in different levels of
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neuronal population responses to rule out the hypotheses the eye movements could cause differential responses. We considered

three classes of population responses: (1) weak responses (DF/F0 < 0.5); (2) sparse, strong responses, with a few cells (less

than 10) responding strongly (DF/F0 > 0.5); and (3) dense responses (more than ten cells responded strongly). We found no

statistically significant differences in the distribution of eye position data in these three classes (Figure S5), which indicated that

the observed effects are not caused by eye movement differences. In addition, we found the neuronal responses to stimuli were

reliable and reproducible across trials (Figure S3). We concluded that the effects of random eye-movement jitters were minimal.

Visual stimuli
Visual stimuli were generated using the ViSaGe system (Cambridge Research Systems) and displayed on a 17’’ LCD monitor

(Acer V173, 80Hz refresh rate) positioned 45 cm from the animal’s eyes. Each stimulus was presented for one second following a

one-second blank at the beginning of the trial while the monkey fixated. We estimated the RF sizes and positions of the imaged

neurons with small drifting gratings (100% contrast square waves, with 4 and 8 cyc/deg at 1 and 2 Hz temporal frequency, 0.8� in
diameter), and bars (0.1� by 0.4�) and dots (0.2� by 0.2�) presented at different locations (7 by 7 grids). The RFs were estimated to

be between 0.3� to 0.8� in size, located at around 3�-5� in eccentricity for the two monkeys.

A stimulus set containing 7,900 higher-order pattern stimuli and 1,600 simple orientation stimuli of various sizes from 0.4� to 3� was

derived from 138 basic patterns (Figure 1), and rotated in 22.5� increments. For both monkeys, a set of orientation bar stimuli were

also presented at 7.5� orientation step to sample 48 orientations with the end of the 1.5� bar (the oriented bar components of the

corners, see Figure S1B). The 138 basic patterns were divided into 6 classes (simple orientation – gratings and lines; short lines

with ends in the receptive fields; angles/corners; crosses; curvatures –circles, rings, and curves; and other complex patterns, see

also Figure S1).

Each stimulus was shown at five different locations, one at the center of the receptive field cluster, and four at 0.2� spatial shifts in
the four cardinal directions relative to the RF cluster center. This entire stimulus set was divided into 8 subsets, each corresponding to

a major rotation of the basic patterns, which required 8 sessions (days) to complete the testing (Figure 1E). For monkey B, we

managed to finish half of the OT and HO stimuli (basic patterns at 45� rotation increments). About 6,000 trials were performed in

each recording session with at least 5 repetitions obtained for each stimulus. The order of the visual stimuli was randomized across

trials in each recording session.

Two-photon imaging
After a recovery period of ten days from the second surgery, the animals were trained to maintain eye-fixation. Two-photon imaging

was performed using a Prairie Ultima IV (In Vivo) two-photon microscope (Bruker Nano, FMBU, formerly Prairie Technologies)

and a Ti: Sapphire laser (Mai Tai eHP, Spectra Physics). The wavelength of the laser was set at 1000 nm. An area of 850 mm 3

850 mm was imaged with a 16 3 objective (0.8-N.A., Nikon). A standard slow galvanometer scan was used to obtain high resolution

static images of cells (10243 1024). A fast, resonant scan (up to 32 frames per second) was used to image of neuronal activity. The

images were recorded at 8 frames per second by averaging 4 frames each. Even though infected cells at depths of up to 700 mmcould

be imaged, we found that a layer at a depth of 160 mm to 180 mm contained a high density of infected cells, so we focused on imaging

V1 neurons within this depth (180 mm in monkey A and 160 mm in monkey B).

Imaging data analysis
All data analyses were performed using MATLAB (TheMathWorks, Natick, MA). The images from each session were first aligned to a

template image (the average image of 1000 frames) using a normalized, cross-correlation-based translation algorithm. This align-

ment corrected the X-Y offset of images caused by the motion between the objective and the cortex. During long-term recordings,

image registrations and alignments were performed to match individual cells across different sessions/days using standard image

registration software available in MATLAB. These registered images were integrated into one large session for further analysis of

shape and feature tuning22. In this experiment, we further confirmed the stability of neuronal population responses across sessions

(days) by examining the consistency of population responses to 15 common stimuli in all sessions (Figure S2).

The cell density was high in the superficial layer of V1, andmany cell bodies were quite dim at rest. It was difficult to visually identify

these cells based on the morphology of static images with the naked eye or by computational algorithms alone. Hence, we identified

regions of interest (ROIs) corresponding to the cell bodies based on the neurons’ responses. The differential images (averaged frame

of the images during the stimulus ONperiod subtracting that during stimulus OFF period for each stimulus condition) were first filtered

using low-pass and high-pass Gaussian filters (5 pixels and 50 pixels, 2 orders, respectively) to emphasize those activity regions

matching the cell sizes. Note that these two filters were only used for ROI identifications. In all further analyses, we used raw,

unfiltered data. Connected subsets of pixels (> 25 pixels) with average pixel value greater than 3 standard deviations (std) of each

differential image were identified as active neurons. Note that this empirical threshold was only used to decide the ROIs of activated

cells and was not a cutoff threshold of measuring neuronal responses. A higher threshold would allow the detection and selection of

the ROIs of cell bodies more accurately but would miss some weakly responding cells. On the other hand, a lower threshold may

include more cells but would have a greater chance of including some false ROIs that cannot be matched to any cell bodies.

The response of a neuron is computed as the ratio of fluorescence change (DF/F0) of these ROIs, whereas DF = F- F0. F0 is the

baseline activity during the blank screen prior stimulus onset in each trial, and F is fluorescence activity in the ROI during stimulus

presentation in the trial.
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Reliability and repeatability analysis of the signals
A key finding of this study is that individual neurons respond strongly to a very select set of stimuli. To ensure the observed specificity

and selectivity in neuronal responses are reliable and repeatable across trials rather than from random spurious activities or noises,

we performed Receiver Operating Characteristics (ROC) analysis [25] across trials. For each single neuron, we examined whether the

highly selective responses (DF/F0 > 0.5max response) observedwere reliable across trials by performing the following ROC analysis.

We first set all stimuli that produced strong mean responses greater than the half-maximum mean peak in ON class and all other

stimuli in OFF class. We then computed the ROC for classifying the ON class against the OFF class based on the neuronal response

in each single trial. If the responses above the half-maximum were stable across all trials, then the AUC (area under the ROC curve)

would be close to 1.0 as the ON and OFF classes were readily discriminable. The null hypothesis is that the sparse strong responses

arose from the spurious single trial epileptic response in a particular trial, and thus were not repeatable across trials. In this case, the

AUC would be close to 0.667. To test this hypothesis, we shuffled all the responses relative to the stimulus labels (see also Figure S3

for details) in each trial, and recomputed the mean responses for all the stimuli across the shuffled trials. We found that most of the

shuffled cases had much lower average peak responses as a result of the mismatch of the rigorous sparse responses across trials

(Figure S3), which suggested the strong sparse (highly selective) responses could not have arisen from spurious noise responses,

confirming the reliability of the selective responses to a particular stimulus in the original data. We repeated the shuffles and ROC

analysis to obtain the AUC for 1,000 times. Notably, in this setting, the random responses would produce an AUC of 0.667 by chance.

The probability of the null hypothesis is the percentage of time that the AUCs of the 1,000 shuffles reach the AUC of the original data.

We found the probability of the null hypothesis to be less than 0.001 (p < 0.001) for cell #554. This confirmed that the curvature selec-

tivity of this cell is stable, and could not result from spurious epileptic responses or false signals. Overall, more than 92% imaged

neurons in both monkeys passed this ROC significant check with p < 0.001. These results confirmed that the observed specificity

in neuronal responses are reliable and repeatable across trials rather than from random spurious firing or noises.

Strategy for randomization and/or stratification
The order of the visual stimuli was randomized during experiments.

Inclusion and Exclusion Criteria of any Data
The weak responded neurons with DF/F0 < 0.5 were excluded during analysis.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistics were performed using customized MATLAB software. The proportion of orientation tuned cells with curvature tunings were

judged by using one-way ANOVA (p < 0.01). A spearman correlation coefficient was used to quantify the stability of recordings across

days (Figure S2). Data are presented asmean ± SEMor as individual data points, as stated in the figure legends. Number of replicates

can be found within the figure legends for each experiment.

DATA AND SOFTWARE AVAILABILITY

The neuronal responses data and stimuli used in this study can be found at https://github.com/Tangshm/V1-Pattern-Selectivity/

projects/1.
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